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Introduction

• In this presentation I revisit an earlier literature which attempted to link 
entropy and information theory to measurement of income inequality.

• There was a flurry of activity in this area some decades ago—Theil (1967), 
Cowell (1980), Shorrocks (1983), etc. But the engagement between the two 
literatures appears to have subsided since then.

• We all use generalized entropy indices, but “entropy” is just part of a label, 
rather than indicating a deep engagement with the roots of entropy and 
information theory.

• I believe a renewed engagement has much to offer us, at least as a 
complement to the (now) conventional inequality measurement literature.



• In the first half of the talk I will take up the roots of entropy and 
information theory.

• In the second half I will look at applications to inequality 
measurement.

• Rather than focus on one specific aspect of entropy or information 
theory, I will highlight a number of different perspectives briefly, in 
the hope of triggering interest in one or other approach to the issue.



Inequality Measurement

• Let x = (x1, x2,….., xK) be a vector of non-negative incomes for i = 
1,2,…K individuals. 

• Let total income be X and mean income be μ = X/N.

• �μ = (μ, μ, ……, μ) be the equal distribution vector.

• The problem of inequality measurement can then be stated as the 
problem of quantifying the divergence between the x and �μ.



• A conventional approach is to specify a social welfare function on x 
and use this to quantify the divergence, for example through an 
“equally distributed equivalent” level of income and its distance from 
the mean, a la Atkinson.

• Another, related, conventional approach is to specify desirable 
normative properties and derive classes of inequality measures which 
satisfy these properties.

• Properties include scale independence and Principle of Transfers.
• Decomposability as a property is also prominent, although we might 

question in what precise sense this has normative content. 



• This is the conventional approach.
• I would like in this presentation to consider an alternative 

perspective, which is somewhat more statistical in nature.
• Consider the following thought experiment. From the distribution of 

dollars across individuals, x = (x1, x2,….., xK), a single dollar is drawn at 
random. How easy is it to trace back which individual the dollar came 
from?

• The extreme cases provide some intuition. If all dollars belonged to 
one individual, tracing back is easy. At the other end, if dollars were 
equally distributed, tracing back would in some sense be the most 
difficult. In between is in between.



• I believe that this way of looking at things—the ease or difficulty of 
tracing a randomly drawn dollar back to its source—leads to an 
interesting parallel/complement to the standard normative frame we 
use in inequality measurement.

• It is worth exploring, and it leads us to an engagement with the 
fundamentals of Entropy and of Information Theory which takes us 
beyond the prevalent use of “Generalized Entropy” as a mere label for 
a formula which all of us use in applied work.

• Such engagement was present in the past (eg in Theil), but seems to 
have diminished considerably in the current literature.



Entropy

• But why “Entropy”? Where did that come from?
• For this we need to go first to Statistical Physics and then to 

Information Theory to understand the implications of a remarkable 
formula.

• And we will encounter the work of two geniuses—Ludwig Boltzmann 
and Claude Shannon—and the remarkable unity across very different 
fields of science.

• Throughout, as we delve into statistical physics and binary coding, 
bear in mind the central thought experiment of tracing a randomly 
drawn dollar to the individual, or the “bin”, from which it came. 



Entropy Definition

• Let a discrete probability distribution be defined as

𝑝𝑝𝑘𝑘; 𝑘𝑘 = 1, 2, … ,𝐾𝐾

𝑝𝑝𝑘𝑘 ≥ 0 ,  ∑𝑘𝑘 𝑝𝑝𝑘𝑘 = 1

• The Entropy of the distribution is defined as

H = − �
𝑘𝑘

𝑝𝑝𝑘𝑘log 𝑝𝑝𝑘𝑘

• (note, by convention 0 log 0 = 0).



Entropy and Statistical Physics

• Let there be K energy levels and X (identical) gas molecules (or 
particles). What is the distribution of particles across energy levels?

• One way to approach this is “Newtonian”. Write down the equation of 
motion of each particle, and all possible interactions between 
particles. Possible in principle, but infeasible in practice—huge 
number of molecules (10 to the power 23 etc).

• The genius of Ludwig Boltzmann (1844-1906) was to formulate this as 
a statistical problem, giving rise to the field of statistical physics.



• Consider a particular configuration ⁄𝑥𝑥𝑘𝑘
𝑋𝑋 = 𝑝𝑝𝑘𝑘

• How many different ways can this configuration arise, bearing in mind 
that the particles are indistinguishable so all that matters is the 
number of particles in each energy “bin”? This is a multinomial 
combinatorics problem and the answer is:

𝑊𝑊 =
𝑋𝑋!

𝑥𝑥1! 𝑥𝑥2! … . . 𝑥𝑥𝐾𝐾!



• W is known as the “multiplicity”. The basic argument is that the 
greater the multiplicity of a configuration, the more likely it is to be 
observed.

• Using Stirling’s approximation large X, log(𝑋𝑋!) ~ 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 − 𝑋𝑋, it can 
be shown that

log𝑊𝑊 = −𝑋𝑋�
𝑘𝑘

𝑝𝑝𝑘𝑘log 𝑝𝑝𝑘𝑘 = 𝑋𝑋 ∗ 𝐻𝐻

• In other words, the Entropy H of a distribution is (proportional to) a 
measure of how likely it is that the configuration will be observed.

• This is “Boltzmann Entropy”.





Entropy and Yes/No Questions

• Now change tack completely. Consider a chess board. In one of the 64 
squares is a prize, but we don’t know which one. It is equally likely 
that the prize is in any square ie with probability 1/64.



• We don’t know where the prize is but there is a machine which will 
always give truthful Yes/No answers to a grid location question. Is it 
here? Is it here? Etc.

• What is the smallest number of questions, in expectation, that will 
get us to the prize?

• Clearly the wrong thing to do is to ask: Is it in square 1? Is it in square 
2? Etc. Or to do it randomly square by square. You might get lucky, 
but you might not.

• Some reflection gives a more efficient set of questions to pose to a 
truthful “Yes/No” answer machine.



• Is it in the first four columns? Is it in the first two of the four columns 
where it is? Is it in the first one of the two columns where it is? Is it in 
the first four rows of this column? Is it in the first two of the these 
four rows? Is it the first of these two rows?

• Thus six questions get us to the prize for sure. 



• But 6 is an interesting number.

• It is the value of  H = −∑𝑘𝑘 𝑝𝑝𝑘𝑘log 𝑝𝑝𝑘𝑘 when  𝑝𝑝𝑘𝑘= 1/64 and 
the logarithm is to the base 2

• Base 2 because we are in the binary world of “Yes/No”, “Off/On”, 
“0/1”



• Is 6 the smallest number of questions which, in expectation, will take 
us to the prize (reveal the information)? The answer is yes.

• In fact we have a remarkable general theorem due to another genius, 
Claude Shannon. 

• Take the general case where the probability of finding the prize in 
square k is 𝑝𝑝𝑘𝑘 and we have any number of squares, 𝑘𝑘 = 1,2, … . .𝐾𝐾

• The smallest number of questions needed, in expectation, to find the 
prize is none other than the Entropy of the distribution

• H = −∑𝑘𝑘 𝑝𝑝𝑘𝑘log 𝑝𝑝𝑘𝑘



Entropy and Coding

• In fact Shannon proved this in the context of finding an efficient 
binary coding for messages. (It was 1948 and he worked for Bell Labs).

• Shannon, 1948: “A Mathematical Theory of Communication”
• Suppose we want to assign a binary code (ie made up of a string of 0’s 

and 1’s) for each letter of the alphabet to send messages through 
“on/off” switches—the dawn of the digital age.

• How should we do this if we want to save on code length—the 
number of 0’s and 1’s?



• The answer surely depends on the frequency with which the letter 
appears in the language. More frequent letters should get the shorter 
code.

• Here is an example illustrating one such method of coding—the 
Huffman Coding Algorithm. Let there be 6 letters with the following 
frequency.

• Letter A B C D E F
• Frequency 5 25 7 15 4 12



• Combine the two lowest frequencies into one. Treating this as one 
unit, combine again the two lowest frequencies into one. And so on 
till we reach the total frequency of all letters.

• This produces a tree diagram with left branches assigned label zero 
and left branch assigned label 1.

• We now have a binary code assignment for each letter as follows:





• Note:
• The actual Yes/No questions are also now specified in the diagram.
• The questions structure is equivalent to the coding structure.
• The lower frequency elements have longer codes.
• (Not obvious)—length of code is inversely related to the log of 

frequency to base 2.



• Thus the Huffman algorithm assigns a binary code to each 
“letter”/”event”/”square” etc.

• Given the frequencies of the letters, the procedure gives an expected 
code length, or the expected number of questions to get to a letter.



• The Huffman Algorithm is good, giving a relatively low expected code 
length. But this code length is not the shortest.

• In his remarkable theorem Shannon showed what the shortest 
possible code length, or the smallest number of questions, in 
expectation, is:

• H = − ∑𝑘𝑘 𝑝𝑝𝑘𝑘log 𝑝𝑝𝑘𝑘

• Or, Entropy!



• Loosely speaking, this is because the “depth” of the tree to a leaf 
from the top is proportional to the log (to the base 2) of the 
frequency. 

• Thus the optimal code length for each outcome k is proportional to 
−log 𝑝𝑝𝑘𝑘; the higher the probability, the shorter the optimal code 
length.

• Hence the expected code length is the expectation of log 𝑝𝑝𝑘𝑘, or

• H = − ∑𝑘𝑘 𝑝𝑝𝑘𝑘log 𝑝𝑝𝑘𝑘



Entropy and Information

• Let there be K possible events; k = 1, 2, …..K.
• Let the probability of event k be given by 𝑝𝑝𝑘𝑘
• What is the “uncertainty” of the above set up?
• Depends on what we mean by “uncertainty”.



• In an intuitive sense, if one of the events had probability of 1 and the 
others were of probability zero, we know for sure what is happening 
and uncertainty is low. 

• Note that in this case H = −∑𝑘𝑘 𝑝𝑝𝑘𝑘log 𝑝𝑝𝑘𝑘 = 0.
• Again in an intuitive sense, the most uncertain case is where all 

probabilities are equal ie 𝑝𝑝𝑘𝑘= ⁄1 𝐾𝐾 . Anything is equally likely.
• Note that in this case entropy H = −∑𝑘𝑘 𝑝𝑝𝑘𝑘log 𝑝𝑝𝑘𝑘 = log𝐾𝐾. This rises 

with K, the more equi-probable states there are, the greater is the 
uncertainty.



• So it looks like  H = −∑𝑘𝑘 𝑝𝑝𝑘𝑘log 𝑝𝑝𝑘𝑘 has something to do with the 
uncertainty of the distribution 𝑝𝑝𝑘𝑘.

• But what exactly? It was the genius of Shannon to show the exact 
connection through an axiomatization.

• Let H(𝑝𝑝1, 𝑝𝑝2, …𝑝𝑝𝐾𝐾) be any function that claims to represent the 
uncertainty or “information content” of a probability distribution 
(𝑝𝑝1, 𝑝𝑝2, …𝑝𝑝𝐾𝐾).

• Shannon proposed three axioms for such a function, two of which are 
straightforward, with a third which has the real meat.



• Axiom 1: H is a continuous function of its arguments.
• Axiom 2: If all the probabilities are equal then H is an increasing 

function of the number of states or events, K.



• Axiom 3. H satisfies the following “composition law”. Group the first 
two events into a single union event, of course with probability m =
(𝑝𝑝1 + 𝑝𝑝2). The conditional probabilities of event 1 and event 2, given 
that the union event, are of course ( ⁄𝑝𝑝1 𝑚𝑚 , ⁄𝑝𝑝2 𝑚𝑚). The axiom says that 
the information content of the overall distribution must be consistent 
with the information content of the union and conditional 
distributions

𝐻𝐻 𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3, …𝑝𝑝𝐾𝐾 = 𝐻𝐻 𝑚𝑚, 𝑝𝑝3, …𝑝𝑝𝐾𝐾 + 𝑚𝑚𝐻𝐻( �𝑝𝑝1 𝑚𝑚 , �𝑝𝑝2 𝑚𝑚)



• Shannon’s remarkable theorem is that these three axioms tie down 
the H function to

H = −𝐶𝐶�
𝑘𝑘

𝑝𝑝𝑘𝑘log 𝑝𝑝𝑘𝑘

where C is a constant.



• There are many other, perhaps more intuitive, routes to the 
functional form. Here is one.

• Let 𝐼𝐼(𝑝𝑝𝑘𝑘) be the “information content” or “surprise value” of an 
event k occurring. If the probability of an event is very high (the sun 
always rises in the East), then the surprise value of that event actually 
happening is very low. On the other hand if an event is very unlikely 
(it rains the Sahara), then the surprise value of that event happening 
is high.

• So 𝐼𝐼(𝑝𝑝𝑘𝑘) should be decreasing in its argument.



• Now consider the information value of two independent events 𝑘𝑘 and 
𝑋𝑋 occurring together. The probability of the intersection event, since is 
the product of the two constituent probabilities, 𝑝𝑝𝑘𝑘𝑝𝑝𝑙𝑙.

• It seems reasonable to specify that the surprise value of this joint 
event, since it is made up of two independent events, is the sum of 
the surprise content of the constitutive events.

• 𝐼𝐼 𝑝𝑝𝑘𝑘𝑝𝑝𝑙𝑙 = 𝐼𝐼 𝑝𝑝𝑘𝑘 + 𝐼𝐼 𝑝𝑝𝑙𝑙



• The only function which satisfies these requirements (up to a 
constant C) is the log function:

• 𝐼𝐼 𝑝𝑝𝑘𝑘 = − log 𝑝𝑝𝑘𝑘
• If the surprise content (or information value) of a single event k is 

given by the above, then the surprise content of the whole 
distribution can be specified as the expectation of 𝐼𝐼 𝑝𝑝𝑘𝑘 . So we are 
back to:

• ∑𝑘𝑘 𝑝𝑝𝑘𝑘𝐼𝐼 𝑝𝑝𝑘𝑘 = − ∑𝑘𝑘 𝑝𝑝𝑘𝑘log 𝑝𝑝𝑘𝑘= 𝐻𝐻
• In other words, Entropy!



Information and Messages

• Suppose we get a message which tells us that the probability of event 
k has gone from 𝑝𝑝𝑘𝑘 to 𝑞𝑞𝑘𝑘. What is the informational change? Clearly it 
is by how much the information value of the event occurring has 
changed:

• 𝐼𝐼 𝑝𝑝𝑘𝑘 − 𝐼𝐼 𝑞𝑞𝑘𝑘 = −log 𝑝𝑝𝑘𝑘 − −log 𝑞𝑞𝑘𝑘 = log( ⁄𝑞𝑞𝑘𝑘 𝑝𝑝𝑘𝑘)
• Suppose the message now transforms each of the k probabilities. For 

each event there is an informational change. The overall change, in 
expectation, taken with respect  to the new probabilities, is

• 𝐷𝐷(𝑞𝑞𝑘𝑘 || 𝑝𝑝𝑘𝑘 ) = ∑𝑘𝑘 𝑞𝑞𝑘𝑘 log(𝑞𝑞𝑘𝑘/𝑝𝑝𝑘𝑘 )



• It can be shown that this is non-negative, with zero if and only if the 
two probability distributions are identical.

• This entity is known as the “Kullback-Leibler divergence”, or 
“informational divergence”, or “relative entropy” between the 
distribution q and the distribution p.



• 𝐷𝐷(𝑞𝑞𝑘𝑘 || 𝑝𝑝𝑘𝑘 ) = ∑𝑘𝑘 𝑞𝑞𝑘𝑘 log(𝑞𝑞𝑘𝑘/𝑝𝑝𝑘𝑘 )

= −∑𝑘𝑘 𝑞𝑞𝑘𝑘 log(𝑝𝑝𝑘𝑘) – (−∑𝑘𝑘 𝑞𝑞𝑘𝑘 log(𝑞𝑞𝑘𝑘))

= H(q, p) – H(q)

“Cross Entropy of q and p” minus “Entropy of q”



• What is cross-entropy?
• Different ways of looking at it, but think of the coding perspective. 
• We know there is an optimal code for probability distribution q, and 

one for p.
• What if we apply the optimal code for p to q? Clearly it is sub-optimal. 

The code length will be longer—the number of questions will be more 
than the smaller optimal number.

• Cross-entropy  H(q, p) is the mistake we make in using the 
information from p to encode q. This perspective also turns out to be 
important for inequality measurement.



Applications to Inequality (I)
Classic Theil

• Let us start simply with the classic exposition by Theil.

• Let q be the actual vector of income shares:

• q = (x1/Kμ, x2/Kμ,…..)

• Let p be the vector of equal income shares:

• p = (1/K, 1/K, ……)



• The Entropy of q is:
• H = − ∑𝑘𝑘 𝑞𝑞𝑘𝑘log 𝑞𝑞𝑘𝑘
• This is the smallest number of Yes/No questions (in expectation) 

needed to trace the origin of a dollar drawn at random.
• Similarly, the Entropy of p is the smallest number of Yes/No questions 

(in expectation) needed to trace the origin of a dollar drawn at 
random from an equal distribution.

• The fall in the number of questions needed is a measure of the 
degree of inequality.



• A little manipulation shows, as is well known, that this difference is 
the Theil index of inequality:

• T = (1/K) Σ(xi/μ) log (xi/μ)
• The standard literature arrives at this through requiring 

decomposability of a particular type (along with scale independence 
and Principle of Transfers).

• The normative import, as opposed to operational convenience, of 
decomposability is not immediately obvious.

• But the “number of questions” interpretation of Theil might provide a 
stronger normative foundation for this commonly used measure.



Applications to Inequality (II)
Theil and Informational Divergence

• If q is the actual distribution of income shares and p is the distribution 
of equal income shares, then it can also be shown by easy 
manipulation that:

• 𝐷𝐷(𝑞𝑞𝑘𝑘 || 𝑝𝑝𝑘𝑘 ) = ∑𝑘𝑘 𝑞𝑞𝑘𝑘 log(𝑞𝑞𝑘𝑘/𝑝𝑝𝑘𝑘 ) = (1/K) Σ(xi/μ) log (xi/μ) = T
• In other words, the Theil index of inequality is the Kullback-Leibler

Divergence between the actual income shares and equal income 
shares.

• This is true mathematically. But think now of an information theory 
based interpretation of the Theil index.



• Recall that 𝐷𝐷(𝑞𝑞𝑘𝑘 || 𝑝𝑝𝑘𝑘 ) is the “surprise” when the prior is p but it 
turns out that the actual is  q.

• The axiomatic basis of this “surprise” is to be found in Shannon’s 
formulation of information axioms.

• Recall that 𝐷𝐷(𝑞𝑞𝑘𝑘 || 𝑝𝑝𝑘𝑘 ) also has interpretation a measure of “coding 
error” when we are using the optimal binary code ie the optimal 
sequence of “Yes/No” questions, for the equal distribution BUT we 
are applying it (incorrectly) for the actual, unequal distribution.

• These interpretations will bear further exploration and investigation.



Application to Inequality III
Theil and Testing for Fairness

• Start with the notion of surprise at an actual unequal distribution 
when the prior is that of an equal distribution.

• This perspective can be used to develop a test for “fairness” as 
follows.

• Imagine a helicopter which has a basket full of X dollars to drop, one 
by one, on to a population of K individuals.

• Let the probability that a dollar sticks to individual k be 𝑝𝑝𝑘𝑘
• Then 𝑝𝑝𝑘𝑘= 1/K is a specification of “equality of opportunity” in this 

world where no other attributes of individuals are specified.



• After the helicopter drop, we observe an actual distribution of dollars 
across individuals:

• 𝑞𝑞𝑘𝑘; 𝑘𝑘 = 1, 2, … ,𝐾𝐾
• On the basis of these observations we would like to test for the hypothesis 

that the process was fair, in other words, 
• 𝑝𝑝𝑘𝑘= 1/K for all K.
• Consider the Likelihood Ratio test for this null hypothesis. It can be shown 

that the LR test statistic for this hypothesis under the multinomial process 
of the helicopter drop is in fact proportional to the Theil Index of 
Inequality:

• LR ∝ T



• This argument, and many extensions and variations on the theme, are 
presented in Kanbur and Snell, Economic Journal, 2019.

• The central take away is that the Theil Index of Inequality can be 
interpreted as a test statistic for the hypothesis of fairness, for a 
specified income generating processes and a specified notion of 
fairness within that process.

• Inequality indices, in this perspective, are no longer (just) ex post 
measures of welfare loss from inequality. They can be turned to use 
as test statistics for fairness.



Application to Inequality IV
Priors Other Than Equal Distribution

• Return to the idea of “surprise” as between a prior p and a posterior 
q.

• Up to now we have been using the equal distribution as the prior, 
𝑝𝑝𝑘𝑘= 1/K 

• But why should the equal distribution be the prior or the norm? 
• Recent developments in the literature have highlighted that some 

unequal distributions could equally well be the norm, for example if 
they exhibit “equality of opportunity”, in the sense that higher 
income as the result of higher “effort” is normatively justifiable, while 
income difference as the result of “circumstances” are not.



• Thus we need to consider the surprise at, or divergence of, the actual 
distribution relative to a prior distribution which is not necessarily the 
equal distribution.

• But we already have the framework in which to do this, since the 
Kullback-Leibler divergence measure is axiomatized for a general prior 
p and a general posterior q.

• If we can specify the norm or the prior with reference to specific 
ethical principles, then the divergence machinery, and its 
interpretations, can be brought into play.



• Going back to the thought experiment of tracing a dollar drawn at random 
back to its source through a series of Yes/No questions, the divergence 
measures how many more questions we will need using a process 
optimized for the norm distribution but (erroneously) used for the actual 
distribution.

• Of course this still leaves open the issue of what the norm vector should 
be. Applications of the Roemer (1998) approach have set the norm vector 
to be one where each individual income is replaced by the mean income of 
the circumstance group (eg race/gender, etc) to which the individual 
belongs. 

• Hufe, Kanbur and Peichl (2018) have augmented this to include poverty 
into considerations of fairness. And there are many other variations.



• But whatever the norm vector, an information theoretic 
interpretation of the divergence between the actual and the norm 
holds out promise for anchoring normative intuitions, at least in 
complementary fashion to conventional approaches.



Application to Inequality V
Flipping Prior and Posterior

• Return to the basic Theil argument of divergence between the equal 
distribution 𝑝𝑝𝑘𝑘= 1/K as the prior and the actual distribution q as the 
posterior.

• What if we were to flip things around—think of the actual as prior 
and the equal distribution as posterior?

• Then it can be shown that the Kullback-Leibler divergence measure is 
simply the Mean Log Deviation (MLD):

• 𝐷𝐷(𝑞𝑞𝑘𝑘 || 𝑝𝑝𝑘𝑘 ) = (1/K) Σlog (μ/xi)



• This is also known as Theil’s second measure, L, because Theil (1967) 
had derived it in terms of “flipping” the prior and posterior compared 
to his main index T.

• Despite L being the “second” measure relative to his main index T in 
Theil (1967), half a century later it is in fact MLD which is becoming 
the workhorse measure of inequality in applied work.

• This is primarily because MLD has nice “path independence” 
properties in sub-group decomposition compared to T. This follows 
from the mathematical fact that the within group component of 
inequality is a population share weighted sum of sub-group 
inequalities for MLD, but an income share weighted sum for T.



• This comparison led Shorrocks (1983) to argue that MLD “is the most 
satisfactory of the decomposable measures.”

• This is undoubtedly the case from an operational point of view. Many of us, 
myself included, use MLD in applied work for this reason.

• But what about the normative basis of the measures?
• T is the surprise using equality as the base and moving to the actual 

distribution—the distribution we actually have. MLD is the surprise in 
moving from the distribution we actually have to a hypothetical equal 
distribution.

• So in this perspective the choice depends not on decomposability 
properties per se, but on what is normatively more appropriate as the 
prior—equality or actual? 



• Of course the issue arises no matter what the norm—equality, 
equality of opportunity, etc. The issue is rather what should be the 
prior—the norm or the actual? 

• If the norm is the prior then T-type measures are appropriate.
• If the actual is the prior, then MLD-type measures are appropriate.
• Magdalou and Knock (2011) and Hufe, Kanbur and Peichl (2019) 

consider and apply alternative T-type and MLD-type measures.



Application to Inequality VI
Shannon Inequality of Opportunity

• Go back to the asking questions game.
• A dollar is drawn at random from 𝑞𝑞𝑘𝑘 and we want to find the smallest 

number of Yes/No questions (in expectation) which will get us to the 
individual source. We know that this magnitude is the entropy of the 
distribution of dollars across individuals.

• Bu suppose now that before the income questions we can ask one 
more question, to which the machine will again give us a truthful 
answer.

• Is the individual a man or a woman?



• The answer to this question will be uninformative if the distributions for 
males and females are identical.

• But if the distributions differ and we know these distributions, then 
conditional on the answer to the first question we can design an optimal 
sequence of questions (the shortest code) for the case of a male dollar 
versus a female dollar.

• Intuitively, and it can be shown formally, the answer to the first question 
allows a lower expected number of questions to trace the dollar.

• This is a metric on the informational gain from knowing whether the dollar 
is male or female. It can also be treated as a metric on the degree of 
stratification in society. 



• Various formal results in information theory now come into play.
• Let there be two random variables X and Y with a joint distribution. 

Let H(X) be the entropy of the marginal for X and H(Y) the entropy for 
the marginal for Y.

• Let 𝐻𝐻 (𝑋𝑋|𝑌𝑌) and 𝐻𝐻 (𝑌𝑌|𝑋𝑋) be the respective conditional entropies.
• Then:
• 𝐼𝐼 𝑋𝑋,𝑌𝑌 = 𝐻𝐻 𝑋𝑋 − 𝐻𝐻 𝑋𝑋 𝑌𝑌
is called the “mutual information” between X and Y.
• (Note: 𝐼𝐼 𝑋𝑋,𝑌𝑌 = 𝐼𝐼 𝑌𝑌,𝑋𝑋 )



• As noted before, knowing Y (the conditioning or “circumstance” 
variable) reduces the number of questions needed to trace a 
randomly drawn dollar X to its source.

• Following Dos Santos and Wiener (2019), an information theoretic 
measure of Inequality of Opportunity, or Shannon Inequality of 
Opportunity (SIOP), can be defined as:

• 𝑆𝑆𝐼𝐼𝑆𝑆𝑝𝑝 = 𝐻𝐻 𝑋𝑋 −𝐻𝐻(𝑋𝑋|𝑌𝑌)
𝐻𝐻(𝑋𝑋)



• This can be compared to Roemer Inequality of Opportunity (RIOP), 
based on between circumstance group MLD, 𝑀𝑀𝑀𝑀𝐷𝐷𝐵𝐵:

• 𝑅𝑅𝐼𝐼𝑆𝑆𝑝𝑝 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵
𝑀𝑀𝑀𝑀𝑀𝑀

• SIOp does not depend at all on the support of the random variables X 
and Y . Transformation of the supports does not change SIOp . But, 
except for proportionate scaling, 𝑅𝑅𝐼𝐼𝑆𝑆𝑝𝑝 does change with 
transformations of the support.



• If the probability distributions of income are identical across types, 
SIOp is zero. In this case, RIOp is also zero. However, RIOp is zero 
whenever the income means of the types are identical.

• Roemer discusses strong and weak notions of equality of opportunity 
and this is related to the above point.

• A mean preserving spread of income distribution within each type 
will reduce RIOp, because MLDB will remain unchanged while overall 
MLD will increase. will go up. An entropy increasing spread of income 
distribution within each type which maintains entropy of the income 
distribution overall will reduce SIOp.



• Comparisons of 𝑆𝑆𝐼𝐼𝑆𝑆𝑝𝑝 and 𝑅𝑅𝐼𝐼𝑆𝑆𝑝𝑝, with particular attention to their 
comparative normative foundations, are an interesting area for 
further research.



Generalizations

• Additivity is at the core of Shannon information entropy:
• 𝐼𝐼 𝑝𝑝𝑘𝑘𝑝𝑝𝑙𝑙) = 𝐼𝐼(𝑝𝑝𝑘𝑘 + 𝐼𝐼(𝑝𝑝𝑙𝑙)
• But what if information is not additive in this way. What if
• 𝐼𝐼 𝑝𝑝𝑘𝑘𝑝𝑝𝑙𝑙) = 𝐼𝐼(𝑝𝑝𝑘𝑘 + 𝐼𝐼 𝑝𝑝𝑙𝑙 + (1 −∝)𝐼𝐼 𝑝𝑝𝑘𝑘 𝐼𝐼 𝑝𝑝𝑙𝑙
• This leads to what is known as “Tsallis Entropy”

• 𝑆𝑆 = 𝐶𝐶
∝−1

(1 − ∑𝑘𝑘 𝑝𝑝𝑘𝑘∝)
• The exploration of these generalized forms is still in its infancy in 

microeconomics, although in inequality measurement we do have 
“generalized entropy” measures of inequality.



Conclusion

• We use the label “generalized entropy measures of inequality” all the 
time, especially in applied work.

• But these days we seldom engage with the entropy and information 
theory roots of these measures. We used to do more of this some 
decades ago.

• There is increasing application of information theoretic concepts in 
microeconomics, including for example in Sims’s 2003 Nobel Prize 
winning paper on Rational Inattention, or Matejka and McKay’s 
recent AER 2015 paper on the foundations of the multinomial logit 
model.



• I have argued that such (re) engagement will be greatly beneficial to 
the literature on inequality measurement. 

• It will illuminate possible normative foundations of inequality 
measures, and it will (re) open new (old) directions for research.
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